

Vehicle Infrastructure Integration

Marthand Nookala, Division Director Minnesota Department of Transportation Mississippi Valley 2005

What is VII?

- 1 of 9 new Federal ITS Initiatives
- Enabling Communications
 Infrastructure:
 - Vehicle to Vehicle
 - Vehicle to Local Roadside
 - Vehicle to Center
- Integrated for Multiple Applications:

Cofaty Mability Commoraid

Road Side Unit Message Switch

Local Application

Background of VII

- Intelligent Vehicle Initiative ("IVI")
 - Vehicle Based Safety Systems
 - Infrastructure Support Would Help
 - Intersection Collision Prevention
 - Lane Departure Prevention
- Integrated Network of Transportation Information ("INTI") or "Infostructure"
 - Sharing Real Time Transportation

Background of VII

- Cooperative Systems
 - Vehicle Systems Benefit from Infrastructure Support
 - Transportation Management
 Systems Benefit from Vehicle Data
- Integrated Systems
 - Multiple Applications Justify the Communications Infrastructure

Background of VII

- Automotive Companies Interested
 - Supports Automotive Safety Efforts
 - Supports Commercial Efforts
 - Customer Relationship Management
 - Business/Entertainment Services
 - Third Party Applications
- Requires Equipment Investment in Vehicle and Infrastructure

Other

Stakeholders

VII Program

VII Applications (Use Cases)

- 110 + Applications Identified
 - Safety, Mobility, Other
 - Public, Private, Shared
- Example Applications:
 - Traffic signal violation warning
 - In-Vehicle Highway Signage
 - Vehicles As Traffic Probes
 - Electronic Payment

VII Applications
Slow Down! Curve Speed

In-Vehicle

On Board Unit

> Curve Geometrics

> > Road Side Unit

Curve Speed Warning Application

Curve Geometrics

VII Applications

- Sample Commercial Applications:
 - Internet Access
 - Entertainment Media Downloads
 - Vehicle Diagnostics/Software Updates
 - Gas & Food Electronic Payment
 - Stolen Vehicle Tracking

VII Issues

- Technical Issues
- Nationwide Deployment
- Operations and Maintenance
- Business models
- Privacy and data ownership

The purpose of this project is to conduct an initial evaluation of technologies needed for Vehicles as Sensors that include:

- In-vehicle software and hardware.
- Communication technologies and protocols for communication from vehicle to center via a variety of technologies.
- Processing individual vehicle data for fusion into MnDOT's CARS traveler information database.
- Formulation of traveler information data for delivery back to vehicles.

Revelution Project Participants

The following are the project participants:

- MnDOT
- Minnesota State Patrol
- Ford Motor Company Research
- Castle Rock Consultants CARS developer
- Innomatixs Software development
- Saturn Systems Software and installation support

General Concept of Vehicles as Sensors

- Collect the data available from onboard vehicle sensors and computers
 - -Existing: GPS location, speed, anti-lock braking, lights, wipers, traction control, airbag, etc.
 - -Additional: pavement

Telematics Unit in Patrol Car

Rev lut Bresent Deployment in Minnesota

Vehicle Hardware

10 Municipal vehicle
Version 1.0 Telematics
Cellular/Data Network
GPS
Road Temperature

Software

Data collection
Data transmission
Data Display

Revolution ploton on the ploton of the ploto

Vehicle Hardware

10 Municipal vehicle Version 2.0 Telematics

Wi-Fi (Vehicle-to-Roadside) (Infrastructure Initiation)

ACN (Automatic Collision Notification) System

ACM (Atmospheric Condition Monitoring) System

Cellular/Data Network

GPS

Road Temperature Surface Roughness

Infrastructure

Vehicle-to-Roadside Communication using Wi-Fi Webpage visualization Cross Country Automotive Support for ACN

Intersection Decision Support Minnesota Focus

- Help Drivers
 Determine
 a Safe Gap
- Rural Expressway2-WayStop Intersections
- Infrastructure
 Based Detection
 and Signing

Stop Sign Gap Assistance

Distribution of Right Angle Crash Type at Study Intersections

Source: Howard Preston CH2MHill

Different Vertical Alignments

Intersection Surveillance

Radar Tracking on Main Road

Lidar Classification On Cross Street

Video Tracking In Median

Driver Behavior Data

- Gap Acceptance
 - By Turning Movement
 - By Vehicle Type, Driver, and Weather
- Intersection Maneuvers
 - Minor Street Stop in Median
 - Mainline Reaction to Crossing Vehicle

Driver Interface (Sign) Simulation

- Evaluate Potential Sign Concepts
- Driver Simulation Evaluation of a Few Concepts

Human Factors Recommendation for Further Development

Split Hybrid:

- -Symbol
- -Countdown

Icon:

- -Prohibitions
- -Vehicles

Thank you!

For More Information contact:

http:/www.its.dot.gov/vii